Automotive Engineering for Sustainable Mobility (AESM)

Enseignements de 1^{ère} année

Code UE	Intitulé de l'Unité d'Enseignement	Anglais	DDRS	Innov.	Responsable	Total encadré (hors PEA)	ECTS
AUTOMOTIVE ENGINEERING for SUSTAINABLE MOBILITY (AESM)						664	60
1 ^{ère}	année AESM - Semes	tre 1				347	30
1AE01	Trends in Automotive Transportation and Sustainable Mobility	ይይይ	??	000	LE MOYNE L.	10	1
1AE02	Scientific pre-requisite	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			JABLOUN M.	50	5
1AE03	Electrical engineering	6 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7		PP		50	5
1AE04	IT: programming	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	PP	JENNANE R.	50	5
1AE05	Advanced physics	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ø	KOURTA A.	50	5
1AE06	French culture and language			DD	BOUTONNE G.	70	4
1EVA1	Evaluation enseignements semestre 1	P PP			BECK.K	2	0
Une UE	au choix selon option ECM ou VDIV						
1AE07	Vehicle Dynamics 1	6 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	(*)	ØØ	HIGELIN P.	65	5
1AE08	Internal combustion engines	P PP		ØØ	HIGELIN P.	65	5
1 ^{ère}	année AESM - Semest	tre 2				317	30
2AE01	Acquisition systems and signal processing	ዮዮዮ			RAVIER P.	50	5
2AE02	Real Time Programming	PPP			CANALS R.	50	5
2AE03	Control and simulation of powertrains	֎֎֎	•	00	CHARLET A.	35	5
2AE04	Project	P PP			HIGELIN P.	130	10
2EVA1	Evaluation enseignements semestre 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			BECK.K	2	0
Une UE au choix selon option ECM ou VDIV							
2AE05	Control and on-board diagnostics applied to internal combustion engines	स्वत्य	••	00	COLIN G.	50	5
2AE06	Control and on-board diagnostics applied to vehicle dynamics	₽₽₽	••	BB	COLIN G.	50	5

Automotive Engineering for Sustainable	Mobility	1AE01	Semester 1	
Trends in Automoti	portatior	portation and		
sustaina	ble Mobi	lity		
Supervisor: Luis LE MOYNE			ECTS:1	
Skills				
At the end of this course, engineering students wi	ill be able to:			
 Understand transport geo-politics 				
Understand the inventory of resources	S			
 Recognize operational actors in the tra 	ansport sector			
Syllabus				
Sustainable mobility				
Environmental incentives				
Well-to-wheels CO2 analysis				
• Areas for technology improvements				
Grading				
Written exam				
Learning hours				
Lectures Tutorials Lab sessions 10h00 0h00 0h00 In person teaching: 10h00	s Free labs 0h00	Project 0h00		
Taught in English: 论论论 SD/SR:		Innovation:	000	

Automotive Engineering for Sustainable Mobility	1AE02	Semester 1				
Scientific pre-requisite						
Supervisor: Meryem JABLOUN		ECTS:5				
Skills						
At the end of this course, engineering students will be able to:						
 Acquire skills and an understanding of mathematical to exploring characteristics of linear systems 	ools necessary for	studying and				
Syllabus						
Fourier series decomposition						
Perform Fourier Series decomposition on continous-time pe phenomenon	riodic signals a	nd understand Gibbs				
Linear differential equations						
Solve linear differential equations: 1st and 2nd order cases: illustra	tion and applicat	ion to physical systems				
Grading						
Written exam						
Learning hours						
Lectures Tutorials Lab sessions Free labs 28h45 21h15 0h00 1h15 In person teaching: 50h00	Project 0h00					
Taught in English: խխխ SD/SR:	Innovation	:				

Automotive Engineering fo	or Sustainable Mo	bility	1AE03	Semester 1	
E	lectrical er	ngineer	ing		
		-	-	ECTS:5	
Skills					
At the end of this course, enginee	ering students will be	able to:			
 Understand electrical parts: electrical motor 	0 1		in electrical mo	otors divided in two	
Understand the inner	working of continuou	us and synchro	nous motors		
 Quantify the electrica power, distortion pow 		tive power, rea	ictive power, ap	parent	
Syllabus					
 Power: quantifying yie 	elds and efficiencies				
 Active, reactive, appa 	rent, distortion powe	r, power facto			
• Three phased system	grid				
Harmonic aspects in p	ower and electromage	gnetic pollutior	n		
 Magnetism applied to synchronous machine 		ss reduction in	permanent ma	gnet rotors of	
	 Continuous motors and AC/DC, DC/DC converters integrated power electronics. Step down and the step up chopper structures 				
 Synchronous motors i converter 	n servo synchronous	machines with	Pulse Width Mo	odulator frequency	
 Four practical session processes 	s illustrate three kind	s of motors an	d transformer n	eeded in industrial	
Grading					
Written exam, Oral exam					
Learning hours					
Lectures Tutorials 13h45 10h00	Lab sessions 26h15	Free labs 0h00	Project 0h00		
In person teaching: 50h00		200			
Taught in English: խխխ	SD/SR:		Innovation:	D D	

Automotive Engineering for Sustainable Mobility	1AE04 Semester	r 1
IT: programn	ning	
Supervisor: Rachid JENNANE	ECTS:5	
Skills		
At the end of this course, engineering students will be able to:	:	
Analyze a problem		
Propose an algorithm		
• Develop an object architecture for a given problem	n	
 Use a development environment and a C/C++ com 	piler	
Syllabus		
Basics		
• Structure of a program in C language		
Basic elements (character, type, constants, variable	es, blocs, etc.)	
Instructions and Operators		
Conditional structures, iterative structures and cor	nnections, etc.	
 Pointers and dynamic variables 		
• Arrays		
• Strings		
 Functions, passing parameters by value, by referen 	nce and by address	
Object oriented programming		
Classes		
 Member variables and member functions 		
Specialized constructors		
 Overloaded functions and operators 		
Data stream		
Abstract classes		
Generic classes		
Grading		
Written exam		
Learning hours		
	labs Project	
	h45 0h00	
In person teaching: 50h00		
Taught in English: 闷闷闷 SD/SR: 🛛 📀	Innovation:	

Automotive Engineering for Sustainable Mobility	1AE05	Semester 1
Advanced phys	ics	
Supervisor: Azeddine KOURTA		ECTS:5
Skills		
At the end of this course, engineering students will be able to:		
 Understand the inner working of power electronics 		
 Understand basic automotive aerodynamics 		
 Solve 1st and 2nd principle based thermodynamic prob 	blems	
Syllabus		
Power electronics		
Semi-conductor physics		
Power MOS		
• IGBT		
Automotive aerodynamics		
Basics of aerodynamics		
Specificities of automotive aerodynamics		
Wind tunnel experiments		
Thermodynamics		
• 1st and 2nd principle of thermodynamics		
• Ideal gases		
Basic engine cycles		
Grading		
Written exam, Report		
Learning hours		
Lectures Tutorials Lab sessions Free labs	s Project	
32h30 13h45 3h45 0h00	0h00	
In person teaching: 50h00		
Taught in English: 闷闷闷 SD/SR: 🛛 👁 👁	Innovation	

Automotive Engineering for Sustainable Mobility			1AE06	Semester 1
F	guage			
Supervisor: Geanina I	BOUTONNE			ECTS:4
Skills				
At the end of this course, e	ngineering students will be	able to:		
Understand spo	oken french and speak basi	c sentences		
 Read and write 	basic french			
Hold a basic co	nversation			
Syllabus				
 French languag 	e sounds			
 French gramma 	ar			
 French conjuga 	tion			
Interactive disc	ussions in French			
Grading				
Written exam, Oral exam				
Learning hours				
Lectures Tuto 0h00 70h		Free labs 0h00	Project 0h00	
In person teaching: 70h00	000	0	1 000	
Taught in English:	SD/SR:		Innovation:	00

Automot	ive Engineering for Sus	tainable Mobili	ty	1AE07	Semester 1
	Ve	hicle Dyna	amics ^r	I	
Supervis	or: Pascal HIGELIN				ECTS:5
Skills					
At the end	of this course, engineering s	tudents will be able	e to:		
•	Understand vocabulary, tec to passenger cars	hnology and genera	al issues and g	goals of vehicle d	ynamics applied
•	Choose and model a tire. De according to an expected be	-		-	bars
•	Model the behavior of a car test measurements	using several nume	erical models	, and compare th	em to real world
•	Conduct experimental meas variation of the geometrical			•	
Syllabus					
•	Generalities: SAE Coordinat geometry of an Axle (toe, ca	•	•	•	
٠	Tire: Constitution and behave torque. Pacejka Model and	-		teral modelling.	Auto- align
•	Axle: Kinematics modelling steer and roll properties. Ar and length (toe, camber etc	alysis of the design	effects on th	e change of char	acteristic angles
•	Vertical behavior and suspe un-sprung mass control in t		-	-	or sprung mass,
•	Transversal Behavior: Acker steer coefficient, characteri Lateral Load Transfer. Anti-r	stic speed, yaw spe			
٠	Numerical simulations and o Thesis)	comparison to real	test results u	sing several mod	els (Simulink,
٠	Practical work 1: Experimen camber and steering angle f			g of the kinemation	cs roll effects on
•	Practical Work 2: Experiment on the geometrical character				
Grading					
	am, Oral exam, Report				
Learning Lecture 35h00	es Tutorials L	ab sessions F 7h30	ree labs 0h00	Project 0h00	
		'SR: 🕚		Innovation:	ØØ

Automotive Engineering for Sustainable Mobility 1AE08 Semester 1 Internal combustion engines Supervisor: Pascal HIGELIN ECTS:5 Skills At the end of this course, engineering students will be able to: Understand the physical and chemical processes occurring during combustion and scavenging in internal combustion engines. Understand the behavior of an engine when changing its settings using modeling Be able to build an internal combustion engine model. Be able to optimize the size and settings of an engine performance under efficiency, power, emission constraints using modeling Syllabus Combustion: Thermochemistry and Kinetics applied to combustion. The self-ignition. Premixed flames, flammability limits, flame stability, turbulent combustion. Diffusion flames, biphasic combustion. Internal aerodynamics of an engine. Mixture preparation, requirements of spark ignition and self-ignition, initiation and propagation of combustion (definition of core burning speeds), formation of pollutants. Identification of engine manufacturers needs in terms of fundamentals Thermodynamic models: Classification of thermodynamic models: air cycle models, one and two zone models, multizone models. Combustion chamber walls losses models. Limits of validity Combustion models: semi-empirical combustion models, application to spark ignition engines. Extension to compression ignition engines. Combustion models for spark ignition engines. Combustion models for compression-ignition engines (spray patterns, combustion models in the premix and diffusion phase) Scavenging models: filling/emptying models and acoustic 1D intake/exhaust. Boundary conditions: open tubing, closed, partially open junctions. Consideration of thermal losses and friction to the walls. Filling efficiency curves reconstruction • Specific Tool: Matlab/Simulink, GTpower, CHEMKIN Grading Written exam, Oral exam, Report Learning hours Tutorials Lectures Lab sessions Free labs Project 16h15 41h15 7h30 0h00 0h00 In person teaching: 65h00 DD SD/SR: Taught in English: 协协协 Innovation:

Automotive Engineering	g for Sustainable Mobility	/ 2AE0	1 Semester 2			
Acquisitio	on systems and	signal pr	ocessing			
Supervisor: Philippe RA	VIER		ECTS:5			
Skills						
At the end of this course, eng	ineering students will be able t	o:				
 Mastering Analog 	to Digital conversion for digital	systems				
 Mastering the Four 	rier Transform for spectral ana	lysis of the data				
 Selecting and impl architecture 	ementing an FIR or IIR filter on	a dedicated hard	ware or software			
Syllabus						
Signal processing basics						
 Analog and digital 	representation, Shannon theo	rem				
 Time and frequence 	Time and frequency representation					
Fourier transform						
 Noise processing 						
Digital filtering						
 Z transform for dig 	gital signals					
 Transverse filters 						
Recursive filters						
Grading						
Written exam						
Learning hours						
Lectures Tutorial			roject			
20h00 20h00	10h00 0	h00 ()h00			
In person teaching: 50h00						
Taught in English: ԽԽԽ	SD/SR:	Innov	ation:			

Automotive Engineering for Sustainable Mobility	2AE02	Semester 2
Real Time Program	ming	
Supervisor: Raphaël CANALS		ECTS:5
Skills		
 At the end of this course, engineering students will be able to: Mastering techniques for the implementation of digital Understanding and implementing hardware and software 	•	ystems
Controling the CAN and FlexRay communication buses		,
Syllabus		
Digital systems		
 Number coding and algebra Analog-to-digital and digital-to-analog conversions 		
Electronic components		
Microcontrollers: applications in automobile Microcontrollers: structure and implementation Architecture of a microcontroller board		
Role and place of an OS on a processor board Architecture of an OS Calls to OS functions		
Automotive communication buses		
CAN and FlexRay buses architecture Communication protocols		
Grading		
Written exam		
Learning hours		
LecturesTutorialsLab sessionsFree labs17h3010h0013h452h30In person teaching: 50h00	Project 8h45	
Taught in English: 闷闷闷 SD/SR:	Innovation:	

Automotive Engineering for Sustainable Mobility 2AE03 Semester 2 **Control & Simulation of Powertrains** Supervisor: Alain CHARLET ECTS:5 Skills At the end of this course, engineering students will be able to: • Understanding why and how hybridization works Understanding where energy is lost in a car vs driving conditions . Being able to build a simple model of a car and its control • **Syllabus** Part 1: Control of powertrains Anti-lock Bracking System (ABS) & Cruise control. This study is performed in simulation with the software Matlab/Simulink Part 2: Simulation of powertrains An overview of electric hybrid powertrains is proposed Then, students work on a simulation platform (Simcenter AMESim by Siemens) where they have to build an energy balance of a conventional vehicle This study is completed by two practical classes on a rolling test bed where students measure energetic performances of a conventional car vs hybrid car (Toyota Yaris) Grading Written exam, Oral exam Learning hours Lectures Tutorials Lab sessions Free labs Project 5h00 22h30 7h30 0h00 0h00 In person teaching: 35h00 00 SD/SR: Innovation: Taught in English: խխխ

Automotive Engineering for Sustainable Mobility	2AE04	Semester 2
Project		
Supervisor: Pascal HIGELIN		ECTS:10
Skills		
At the end of this course, engineering students will be able to:		
• Split a complex task into subtasks. Plan and schedule ta	asks	
 Work as a group. Assign tasks to members of the group 	taking dependen	icies into account
 Select the more adequate modeling level and simulation 	on tool	
 Present work performed in a concise way focusing on t 	he most importar	nt aspects
 Build working powertrain and vehicle dynamics models 	s based on experir	mental data
Syllabus		
Reformulation of project subject		
 Split subject objectives into tasks and sub-tasks 		
 Schedule tasks and assign them to project members 		
 Report work performed, current state and upcoming ta 	asks every 2 week	s
Grading		-
Thesis, Oral exam		
Learning hours		
Lectures Tutorials Lab sessions Free labs	Project	
0h00 0h00 0h00 0h00	Project 130h00	
In person teaching: 130h00	1 100100	
Taught in English: 闷闷闷 SD/SR:	Innovation	•

Automotive Engineering for Sustainable Mobility	2AE05	Semester 2				
Control and on-board diagnos	sis applie	d to ICE				
Supervisor: Guillaume COLIN		ECTS:5				
Skills						
At the end of this course, engineering students will be able to:						
 Find the good set of parameters for a PID controller on 	simple systems					
 Tune an internal combustion engine control 						
 Control some simple actuators 						
 Define, parameterize and implement a simple observer 	r-based diagnosis	tool				
Syllabus						
State of the art of engine control: sensors, actuators						
Gasoline engines						
Diesel engines						
Automatic control						
• Linear Models (1st order, 2nd order)	Linear Models (1st order, 2nd order)					
Conventional Linear Control (PID)						
Applications to powertrain control : labs						
• Experimental engine test benches : tuning and control						
Hardware in the Loop (HIL) & Rapid prototyping for Con	ntrol: Application	on valves				
On Board Diagnosis						
Rule based diagnosis						
Observer based diagnosis with numerical simulations o	n Matlab/Simulin	k				
Grading						
Written exam, Oral exam						
Learning hours						
LecturesTutorialsLab sessionsFree labs23h4510h0016h150h00	Project 0h00					
In person teaching: 50h00		, D D				
Taught in English: 闷闷闷 SD/SR:	Innovation	~~				

Automotive Engineering for Sustainable Mobility	2AE06 Semester 2
Control and on-board diagnos	sis applied to vehicle
dynamics	
Supervisor: Guillaume COLIN	ECTS:5
Skills At the end of this course, engineering students will be able to:	
 Find the good set of parameters for a PID controlle Tune a vehicle dynamics control Control some simple actuators Define, parameterize and implement a simple observation 	r on simple systems
Syllabus	
State of the art	
Hardware (sensors, actuators) Software	
Automatic control	
 Linear Models (1st order, 2nd order) Conventional Linear Control (PID) 	
Applications to vehicle dynamics : labs	
 Tuning a vehicle dynamics controller Hardware in the Loop (HIL) & Rapid prototyping for Control: Application on valves 	
On Board Diagnosis	
Rule based diagnosisObserver based diagnosis with numerical simulatio	ns on Matlab/Simulink
Grading	
Written exam, Oral exam	
Learning hoursLecturesTutorialsLab sessionsFree31h158h4510h00OhiIn person teaching: 50h00	
Taught in English: ውውው SD/SR: 📀 🏵	Innovation: